Jamie M. Taylor

RESEARCH Interests

- Asymptotic analysis in the calculus of variations.
- Mean-field models applied to the study of phase transitions in liquid crystals.
- Inverse problems and their treatment via techniques of machine learning.

EDUCATION

University of Oxford, Oxford, UK.

DPhil Mathematics. (October 2012 - September 2016)

- Dissertation Topic: "Mathematical Models of Liquid Crystals and Related Materials".
- Supervisor: John M. Ball

Cardiff University, Cardiff, UK

MMath Mathematics, First-class honours. (September 2008 - July 2012)

- Final year thesis topic: "Reaction-diffusion equations".
- Final year thesis supervisor: Nicolas Dirr.

Positions Held

Postdoctoral fellow, Basque Center for Applied Mathematics (BCAM), Bilbao, Spain

September 2018 - Present

• In the Applied Analysis research group, mentored by Prof. Arghir Zarnescu

Postdoctoral research scholar, Liquid Crystal Institute and Department of Mathematical Sciences, Kent State University, Ohio USA.

March 2017 - August 2018 (Research leave granted July 2017 - January 2018)

• In the research group of Prof. Peter Palffy-Muhoray.

Postdoctoral research assistant, Mathematical Institute, University of Oxford, UK.

October 2016-January 2018 (Research leave granted March 2017-July 2017)

• Working under the SOLLIQ ERC grant, P.I. Prof. Sir John M. Ball.

Honors and Awards

Dr George Greaves Prize

Awarded by Cardiff University for highest overall grade in MMath course (2012).

Publications

Effective surface energies in nematic liquid crystals as homogenised rugosity effects Accepted, to appear in Communications in Contemporary Mathematics. Preprint available at arXiv:2108.11133

R. Ceuca, J. M. Taylor, A.D. Zarnescu

On quadrature rules for solving Partial Differential Equations using Neural Networks Computer Methods in Applied Mechanics and Engineering 393 (2022): 114710.

J.A. Rivera, J. M. Taylor, Á. J. Omella, D. Pardo

Hölder regularity and convergence for a non-local model of nematic liquid crystals in the large-domain limit

 $Nonlinear\ Analysis\ 215\ (2022);\ 112641.$

G. Canevari, J.M. Taylor

Cavity volume and free energy in hard particle systems

Journal of Nonlinear Science 31.87 (2021)

J.M Taylor, T. Fai, E.G. Virga, X. Zheng, P. Palffy-Muhoray

On a probabilistic model for martensitic avalanches incorporating mechanical compatibility

Nonlinearity 34.7 (2021): 4844.

F. Della Porta, A. Rüland, J.M. Taylor, C. Zillinger

Leaky Cell Model of Hard Spheres

The Journal of Chemical Physics 154.10 (2021): 104505.

T. Fai, P. Palffy-Muhoray, J.M Taylor, E.G. Virga, X. Zheng

Γ -convergence of a mean-field model of a chiral doped nematic to the Oseen-Frank description of cholesterics

Nonlinearity, 33.6 (2020): 3062.

J.M. Taylor

Convex Integration Arising in the Modelling of Shape-Memory Alloys: Rigidity, Flexibility and Some Numerical Implementations

Journal of Nonlinear Science, 29.5 (2019): 2137-2184.

A. Rüland, J.M. Taylor, and C. Zillinger

The excluded volume of two-dimensional convex bodies: Non-uniqueness and shape reconstruction

Journal of Physics A: Mathematical and Theoretical, 52.9 (2019): 095002

J.M. Taylor

Contributions of repulsive and attractive interactions to nematic order

Liquid Crystals 45.13-15 (2018): 2352-2360.

P. Palffy-Muhoray, J.M. Taylor, E.G. Virga, X. Zheng

An analysis of equilibria in dense nematic liquid crystals

SIAM Journal on Mathematical Analysis, 50.2 (2018): 1918-1957.

J.M. Taylor

Oseen-Frank-type theories of ordered media as the Γ -limit of a mean-field free energy J.M. Taylor

Mathematical Models and Methods in Applied Sciences 28.04 (2018): 615-657.

Density functional theory for dense nematics with steric interactions.

E.S. Nascimento, P. Palffy-Muhoray, **J.M. Taylor**, E.G. Virga, X. Zheng *Physical Review E*, 96.2 (2017): 022704

Finite extensibility and non-Gaussian chain statistics in liquid crystal elastomers. J.M. Taylor

Molecular crystals and liquid crystals, 632.1 (2016): 79-88

Maximum entropy as the bridge between microscopic and macroscopic theory. J.M. Taylor

Journal of Statistical Physics, 164.6 (2016): 1429-1459.

Under review

Multimodal Bayesian variational autoencoder for inverse problems in geophysics O. Rodriguez, J.M. Taylor, D. Pardo

CONFERENCE PRESENTATIONS (ORAL)

Deep learning methods for liquid crystal driven transformation optics

8th European Congress on Computational Methods in Applied Sciences and Engineering (Oslo, June 2022)

On quadrature rules for solving differential equations using Deep Learning

HPC, Deep Learning and Numerics in Geophysics (Bilbao, November 2021)

Rugosity effects in liquid crystals

SIAM Conference on Mathematical Aspects of Materials Science (Online - Bilbao, May 2021, Invited).

Revisiting the hard particle equation of state

SIAM Conference on Mathematical Aspects of Materials Science (Online - Bilbao, May 2021, Invited).

Microscopic to macroscopic modelling of liquid crystals

New trends in the variational modeling and simulation of liquid crystals (Erwin Schrdinger International Institute for Mathematics and Physics, December 2019, Invited).

A forward and inverse problem on the excluded volume of convex bodies

International Congress on Industrial and Applied Mathematics (ICIAM) (Valencia, July 2019, Invited).

Asymptotic Analysis of the Helical Twisting Power of Chirally Doped Nematics

Materials Research Society, Spring Meeting (Arizona, April 2019)

Construction of two dimensional convex shapes from their excluded volumes

Workshop on Optimal Design of Complex Materials (DNM1) (Isaac Newton Institute, Cambridge, January 2019, Invited).

Maximum Entropy, Duality and Onsager

International Conference on Liquid Crystals (Kent State University, August 2016)

Finitely extensible polymer chains in nematic elastomers

SIAM Mathematical Aspects of Materials Science conference (Philadelphia, May 2016)

Convex duality methods for a non-convex minimisation problem

SIAM Student Chapter Conference (University of Oxford, April 2016)

Maximum entropy methods in Onsager's mean field free energy

Young Researchers in Mathematics Conference (University of Oxford, August 2015)

A physical model to predict a ferroelectric nematic phase

Mathematics of Liquid Crystals Young Researchers Meeting (Isaac Newton Institute, May 2013)

CONFERENCE PRESENTATIONS (POSTERS)

From mean field to Oseen-Frank by techniques of Gamma-convergence, IMA Workshop - Liquid Crystals, Soft-matter Packing, and Active Systems: Materials and Biological Applications, (University of Minnesota, January 2018)

Dense liquid crystals and duality methods for finding equilibria, PIRE-CNA Summer School - New Frontiers in Nonlinear Analysis for Materials, (Carnegie Mellon University, June 2016);

Maximum entropy and Onsager's free energy, NYU-Oxford Workshop on Mathematical Models of Defects and Patterns, (Courant Institute of Mathematical Sciences, New York University, January 2016);

Non-Gaussian chain statistics and finite extensibility in liquid crystal elastomers, Euro-

pean Conference on Liquid Crystals, (University of Manchester, September 2015)

Seminar Presentations

Cavity volume and free energy in the hard particle system

CUNEF, Madrid, February 2022

Convergence of variational problems and an example with liquid crystals.

Escuela Doctoral de Matemática y Estadística. *Pontificia Universidad Católica de Chile, October* 2021

Microscopic to macroscopic modelling of liquid crystals

(University of Verona, December 2019)

Asymptotics of a mean-field model for nematics with chiral dopant

(AMLCI, Kent State University, February 2019)

Oseen-Frank as a Gamma limit of a non-local mean field free energy

(University of Sussex, November 2017)

Oseen-Frank as a Gamma limit of a non-local mean field free energy

(BCAM, October 2017)

Deriving the Oseen-Frank theory for liquid crystals from a mean-field free energy.

(Purdue University, March 2017)

Mean-field, Oseen-Frank, and the convergence of energy functionals

Two-part seminar

(Kent State University, March 2017)

From mean-field to Oseen-Frank with multiple elastic constants

Solid and liquid crystals seminar

(University of Oxford, January 2017)

Finite concentration effects in uniaxial nematics

Solid and liquid crystals seminar

(University of Oxford, November 2015)

Order parameters, entropy and mean-field free energy for macroscopic models

Solid and liquid crystals seminar

(University of Oxford, May 2015)

Challenges in modelling nematic elastomers

Solid and liquid crystals seminar

(University of Oxford, January 2014)

RESEARCH PROGRAM INVITATIONS

The Isaac Newton Institute for Mathematical Sciences, University of Cambridge,

The Mathematical Design of New Materials January and May 2019

Institute for Mathematics and its Applications, University of Minnesota,

Liquid Crystals, Soft-matter Packing, and Active Systems: Materials and Biological Applications January and May 2018

Supervisory Experience

University of Oxford, Undergraduate Summer Research Project Supervisor (2015)

Research Project: "Constrained Problems in the Calculus of Variations"

Student: Thomas Swayze (Carnegie Melon University)

University of Oxford, Undergraduate Summer Research Project Supervisor (2014)

Research Project: "Entropy and Moment Problems in Macroscopic Theory"

Student: Maciej Buze (University of Strathclyde)

TEACHING EXPERIENCE

Workshop, Ávila (2022)

• Course and Workshop on Solving Partial Differential Equations with Deep Learning (50 hours)

Basque Center for Applied Mathematics (2019)

• Variational Models of Liquid Crystals: Materials Science at Many Length Scales (Short course with G. Canevari)

Kent State University, Instructor (2018)

• Analytic Geometry and Calculus 1 - Spring Semester 2018

University of Oxford, Teaching Assistant (2013-2015)

- Banach Spaces Michaelmas term 2014-2015 academic year.
- Statistical Mechanics Michaelmas term 2013-2014 academic year.

Cardiff University, Class Tutor (2011-2012)

- Analysis I Second Semester 2011-2012 academic year.
- Elementary Differential Equations First semester 2011-12 academic year.

Backwell Comprehensive School, Student Associate (2010)

- Working collaboratively with individual pupils and groups providing tutorial, mentoring and coaching support under supervision.
- Elements of widening participation, special educational needs, equal opportunities, behaviour management and working with gifted and talented students.

Conferences Organised

Minisymposia organiser - SIAM Conference on Mathematical Aspects of Materials Science (May 2021)

Minisymposia organiser for MS12 - Complex microstructures in solid crystals with Angkana Rüland.

Young Researchers in Mathematics Conference 2015 - University of Oxford

Member of the conference-wide organising committee.

Additional Skills

Computing skills

- TensorFlow2.0 library (Python): Applications to machine learning and inverse problems.
- FEniCS library (Python): Finite element solvers.
- Mathematica: General use.

Languages

- English (Native)
- Spanish (C1, Awarded by Escuela Oficial de Idiomas, Bilbao).